quasi-orthogonal - définition. Qu'est-ce que quasi-orthogonal
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est quasi-orthogonal - définition

Orthogonal coordinate system; Orthogonal coordinate

Orthogonal polynomials         
SET OF POLYNOMIALS WHERE ANY TWO ARE ORTHOGONAL TO EACH OTHER
Orthogonal polynomial; Orthogonal polynomials/Proofs; Orthogonal polynomials/proofs; Orthonormal polynomial
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product.
Quasi-market         
TYPE OF EXCHANGE SYSTEM
Quasi market
Quasi-markets, are markets which can be supervised and organisationally designed that are intended to create greater desire and more efficiency in comparison to conventional delivery systems, while supporting more accessibility, stability and impartiality than traditional markets. Quasi-markets also can be referred to as internal or planned markets.
Quasi-constitutionality         
CANADIAN TERM FOR A LAW THAT OVERRIDES REGULAR LAWS BUT IS NOT PART OF THE CONSTITUTION
Quasi-constitutionality (Canada); Quasi-constitutional; Quasi-consitutionality
In Canada, the term quasi-constitutional is used for laws which remain paramount even when subsequent statutes, which contradict them, are enacted by the same legislature. This is the reverse of the normal practice, under which newer laws trump any contradictory provisions in any older statute.

Wikipédia

Orthogonal coordinates

In mathematics, orthogonal coordinates are defined as a set of d coordinates q = ( q 1 , q 2 , , q d ) {\displaystyle \mathbf {q} =(q^{1},q^{2},\dots ,q^{d})} in which the coordinate hypersurfaces all meet at right angles (note that superscripts are indices, not exponents). A coordinate surface for a particular coordinate qk is the curve, surface, or hypersurface on which qk is a constant. For example, the three-dimensional Cartesian coordinates (x, y, z) is an orthogonal coordinate system, since its coordinate surfaces x = constant, y = constant, and z = constant are planes that meet at right angles to one another, i.e., are perpendicular. Orthogonal coordinates are a special but extremely common case of curvilinear coordinates.